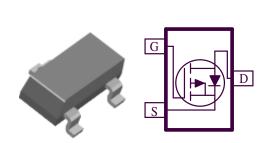


## AM2317P

I<sub>D</sub> (A)


-1.0

-0.9

These miniature surface mount MOSFETs utilize a high cell density trench process to provide low  $r_{DS(on)}$  and to ensure minimal power loss and heat dissipation. Typical applications are DC-DC converters and power management in portable and battery-powered products such as computers, printers, PCMCIA cards, cellular and cordless telephones.

- Low r<sub>DS(on)</sub> provides higher efficiency and extends battery life
- Low thermal impedance copper leadframe SOT-23 saves board space
- Fast switching speed
- High performance trench technology

ROHS COMPLIANT HALOGEN



 $\mathbf{r}_{\mathrm{DS(on)}}(\Omega)$ 

 $0.30 @ V_{GS} = -10 V$ 

 $0.50 @ V_{GS} = -4.5V$ 

**PRODUCT SUMMARY** 

 $V_{DS}(V)$ 

-30

| ABSOLUTE MAXIMUM RATINGS (T <sub>A</sub> = 25 °C UNLESS OTHERWISE NOTED) |                                         |                                   |            |       |  |  |  |  |
|--------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|------------|-------|--|--|--|--|
| Parameter                                                                |                                         |                                   | Maximum    | Units |  |  |  |  |
| Drain-Source Voltage                                                     |                                         |                                   | -30        | V     |  |  |  |  |
| Gate-Source Voltage                                                      |                                         |                                   | ±20        | v     |  |  |  |  |
| Continuous Drain Current <sup>a</sup>                                    | $T_A=25^{\circ}C$                       | ] <sub>T</sub>                    | ±0.9       |       |  |  |  |  |
|                                                                          | $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ | ID                                | ±0.75      | А     |  |  |  |  |
| Pulsed Drain Current <sup>b</sup>                                        |                                         |                                   | ±10        |       |  |  |  |  |
| Continuous Source Current (Diode Conduction) <sup>a</sup>                |                                         | Is                                | 0.4        | А     |  |  |  |  |
|                                                                          | $T_A=25^{\circ}C$                       | П                                 | 0.5        | W     |  |  |  |  |
| Power Dissipation <sup>a</sup>                                           | $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ | rD                                | 0.42       | vv    |  |  |  |  |
| Operating Junction and Storage Temperature Range                         |                                         | T <sub>J</sub> , T <sub>stg</sub> | -55 to 150 | °C    |  |  |  |  |

| THERMAL RESISTANCE RATINGS               |              |                   |         |       |  |  |  |  |
|------------------------------------------|--------------|-------------------|---------|-------|--|--|--|--|
| Parameter                                |              | Symbol            | Maximum | Units |  |  |  |  |
| Maximum Junction-to-Ambient <sup>a</sup> | t <= 5 sec   | р                 | 250     | °C/W  |  |  |  |  |
|                                          | Steady-State | R <sub>thja</sub> | 285     |       |  |  |  |  |

Notes

a. Surface Mounted on 1" x 1" FR4 Board.

b. Pulse width limited by maximum junction temperature



## AM2317P

| SPECIFICATIONS ( $T_A = 25^{\circ}C$ UNLESS OTHERWISE NOTED) |                      |                                                                                            |        |       |      |        |  |
|--------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------|--------|-------|------|--------|--|
| Parameter                                                    | Symbol               |                                                                                            | Limits |       |      | TI . M |  |
|                                                              |                      | Test Conditions                                                                            | Min    | Тур   | Max  | Unit   |  |
| Switch Off Characteristics                                   |                      |                                                                                            |        |       |      |        |  |
| Drain-Source Breakdown Voltage                               | V <sub>(BR)DSS</sub> | $V_{GS} = 0 V$ , $I_D = -250 uA$                                                           | -30    |       |      |        |  |
| Zero Gate Voltage Drain Current                              | Idss                 | $V_{DS} = -24 V, V_{GS} = 0 V$                                                             |        |       | -1   | μA     |  |
|                                                              |                      | $V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$                 |        |       | -10  |        |  |
| Gate-Body Leakage                                            | Igss                 | $V_{DS} = 0 V, V_{GS} = \pm 20 V$                                                          |        |       | ±100 | nA     |  |
| Switch On Characteristics                                    |                      |                                                                                            |        |       |      |        |  |
| Gate-Threshold Voltage                                       | V <sub>GS(th)</sub>  | $V_{DS} = V_{GS}, I_D = -250 \text{ uA}$                                                   | -0.80  | -1.7  | -2.6 | V      |  |
| On-State Drain Current <sup>A</sup>                          | ID(on)               | $V_{DS} = -5 V, V_{GS} = -4.5 V$                                                           | -2     |       |      | А      |  |
| Drain-Source On-Resistance <sup>A</sup>                      | fDS(on)              | $V_{GS} = -10 \text{ V}, I_D = -1.0 \text{ A}$                                             |        | 0.25  | 0.30 | Ω      |  |
|                                                              |                      | $V_{GS} = -4.5 \text{ V}, \text{ ID} = -0.9 \text{ A} \text{ T}_{J} = 55^{\circ} \text{C}$ |        | 0.53  | 0.66 |        |  |
|                                                              |                      | $V_{GS} = -4.5 \text{ V}, I_D = -0.9 \text{ A}$                                            |        | 0.45  | 0.50 |        |  |
| Forward Tranconductance <sup>A</sup>                         | gfs                  | VDS = -5 V, ID = -1.1 A                                                                    |        | 2     |      | S      |  |
| Diode Forward Voltage                                        | V <sub>SD</sub>      | $I_{S} = -0.4 \text{ A}, V_{GS} = 0 \text{ V}$                                             |        | -0.70 | -1.2 | V      |  |
| Dynamic <sup>b</sup>                                         | -                    |                                                                                            |        |       |      | _      |  |
| Total Gate Charge                                            | Qg                   | $V_{DS} = -10 \text{ V}, V_{GS} = -5 \text{ V},$<br>ID = -0.9 A                            |        | 2.0   | 3.0  |        |  |
| Gate-Source Charge                                           | Qgs                  |                                                                                            |        | 0.5   |      | nC     |  |
| Gate-Drain Charge                                            | Qgd                  | ID = -0.9  A                                                                               |        | 1.1   |      |        |  |
| Switching                                                    |                      |                                                                                            |        |       |      |        |  |
| Turn-On Delay Time                                           | t <sub>d(on)</sub>   |                                                                                            |        | 8     | 16   | ns     |  |
| Rise Time                                                    | tr                   | $V_{DS} = -10 \text{ V}, I_D = -0.9 \text{ A},$                                            |        | 16    | 32   |        |  |
| Turn-Off Delay Time                                          | td(off)              | $R_G = 50 \Omega,  V_{GEN} = -10  V$                                                       |        | 36    | 93   |        |  |
| Fall-Time                                                    | $t_{\mathrm{f}}$     |                                                                                            |        | 33    | 94   |        |  |

Notes

a. Pulse test:  $PW \le 300$ us duty cycle  $\le 2\%$ .

b. Guaranteed by design, not subject to production testing.